
8 The Delphi Magazine Issue 26

Trapping Keystrokes
by Warren Kovach

Typing accented characters in
Windows programs can be

problematic, particularly if you
have an English language key-
board. Keyboards designed for
non-English languages will have
keys for some accented charac-
ters, or allow them to be entered
with two or three keystrokes. How-
ever, they commonly have just
those few accented characters that
are most useful for that language.
The US-International keyboard
layout also allows accented char-
acters to be entered with several
keystrokes, but this assumes the
US keyboard layout, which is differ-
ent to the UK keyboard I use. Some
word processors, such as Word,
have their own set of shortcuts for
accented characters, but these
only work within that program and
are different to the usual combina-
tions on non-English keyboards.

In the absence of any of these
schemes more laborious tech-
niques must be used to enter
accented and other extended char-
acters. You can either cut and
paste from the Windows Character
Map app or type the character’s
code on the numeric keypad (eg
Alt-0228 for ä). Hands up everyone
who has a chart of these codes
taped up next to your computer!

What is needed is a consistent
and easy to remember scheme for
producing all accented and
extended characters that will work
on any keyboard.

Several years ago, soon after I
started using Windows, I ran
across a freeware program called
Compose, produced by Digital
Equipment Corporation to emulate
the Compose key found on many of
their own terminals and worksta-
tions. When this key was pressed
and released the typist could then
press two other keys to compose
an accented character. The
sequence Compose, a and " would
produce ä. I regularly need to use
accented characters in many
different Windows programs, so

this application quickly became a
permanent part of my setup.

When Windows 95 was released I
discovered to my dismay that the
16-bit Compose program would
not work with 32-bit programs. I
resolved to write my own 32-bit
version. Someday.

That day finally arrived when I
started looking at ways to trap
system-wide keystrokes. Trapping
keystrokes within your own appli-
cation is easy: create an event han-
dler for OnKeyPress, OnKeyDown or
OnKeyUp for the appropriate form or
control. If you want the form to get
the keystrokes for all its controls
you set KeyPreview to True.

Trapping keystrokes from other
programs is more difficult: you
have to drop down to the Windows
API level and implement some-
thing called a hook. This article
shows you how to go about install-
ing a system-wide keyboard hook
to allow entry of accented charac-
ters. Since it is inspired by the
Compose program and is written in
Delphi, I’ve called the program
DCompose (no jokes about smelly
things, please!).

Windows Hooks
A hook is a mechanism for inter-
cepting various system events
before they reach an application.
These events can be mouse move-
ments, keystrokes or various other
Windows messages. The hook con-
sists of a procedure that, once reg-
istered with Windows, will receive
notification of the desired type of
events. That procedure can then
examine the event and act on it.

Windows maintains a chain of
hook procedures so that more
than one program can intercept
the events. Once a hook procedure
has examined and acted on an
event it will usually pass it on to the
next hook in the chain. Of course
there will be situations where the
event will not be passed on. For
example, the purpose of a hook
may be to disable a certain type of

keystroke. In that case the proce-
dure will examine each keystroke
and only pass on those that are not
disabled. A hook procedure such
as this must be written carefully to
ensure that all other events are
indeed passed on. A rogue hook
procedure that swallows all key-
strokes could have a very detri-
mental effect on other programs!

There are three API functions
used for implementing hooks:
SetWindowsHookEx, UnhookWindows-
HookEx and CallNextHookEx. The
first two take care of registering
the hook procedure with Windows
and removing it from the chain
when finished. CallNextHookEx is
used to pass an event on to the
next hook in the chain.

The SetWindowsHookEx function is
declared as follows:

function SetWindowsHookEx(
idHook: Integer;
lpfn: TFNHookProc;
hmod: HINST;
dwThreadId: DWORD): HHOOK;
stdcall;

The HINST, DWORD and HHOOK types
are Integer in 32-bit Delphi. This
function takes four parameters.
The first, idHook, is the type of hook
being installed. There are 12 types,
ranging from WH_CALLWNDPROC,
which traps all messages sent with
SendMessage, to WH_CBT for examin-
ing a variety of window and input
events to implement a computer
based training system, and
WH_MOUSE to intercept mouse mes-
sages. We will use the WH_KEYBOARD
hook, which traps all keystrokes.

The second parameter, lpfn, is a
pointer to the hook procedure.
This is the procedure that you
write to examine and act on the
events. It must be declared with
the following parameters:

function MyHookProcedure(
Code: Integer;
wParam: WPARAM;
lParam: LPARAM) : LRESULT;

10 The Delphi Magazine Issue 26

The meaning of the three para-
meters varies depending on the
type of hook that was installed.
However, in general the Code
parameter gives information about
the action that caused the event to
be triggered, or how the procedure
should deal with it. wParam and
lParam, which are both 32-bit inte-
gers in Windows 95 and NT, give
information about the event itself.
For the WH_KEYBOARD hook wParam
will contain the virtual-key code for
the keystroke. This is a device-
independant code that specifies
the key that has been pressed. For
example, the VK_A code specifies
the key that produces the letter ‘A’,
which on French and Belgian key-
boards is in a different position to
most others. lParam contains extra
information on the keystroke, such
as whether the key is being
pressed or released, if the Alt key
is being pressed, and the number
of times the key has been repeated
if the user is holding it down.

Your hook procedure must
return a 32-bit integer result. The
result to return again varies
depending on the type of hook. For
WH_KEYBOARD a non-zero result
means that Windows should not
pass the keystroke on to the appli-
cation or any other hook proce-
dure. A zero result means that the
keystroke can be sent to the appro-
priate application.

The final two parameters for
SetWindowsHookEx, hMod and
dwThreadID, let you specify either
the DLL or thread to which the
hook applies. If you want a system-
wide hook you pass the instance
handle of the DLL containing the
hook procedure in hMod. If instead
you want the hook to only work
within a particular thread then you
pass the thread ID in dwThreadID.
When one of these parameters is
set the other should be 0.

When you are done using a hook
you must remove the procedure
from the chain. This is done with
the folowing function:

function UnhookWindowsHookEx(
hhk: HHOOK): BOOL;

The hhk parameter is the hook
handle that was returned by

SetWindowsHookEx, so you must
make sure to save this when you
set up the hook.

The hook handle is also needed
when passing an event on to the
next hook procedure in the chain,
which is done with the following
function:

function CallNextHookEx(
hhk: HHOOK;
nCode: Integer;
wParam: WPARAM;
lParam: LPARAM): LRESULT;

Besides the current hook handle
hhk (which is ignored by current
versions of Windows, but may be
used in the future), your hook pro-
cedure must also pass on the three
parameters it received. The result
returned by CallNext- HookEx will
have the same meaning as that of
your own hook procedure.

Your hook procedure would
therefore normally take the result
from CallNextHookEx and return it
as its own result. In this way the
result code filters up the chain of
hook procedures back to Windows.

Designing The Hook
Now that we know the basics of
how to set up a hook how can we
use this to solve our problem? We
need to trap a sequence of three
keystrokes and convert them into a
single accented character. All
other keystrokes must be passed
on unchanged.

The primary task of our hook
procedure will be to examine all
keystrokes, looking for our ‘Co-
mpose’ key being pressed. I’ve fol-
lowed the lead of Digital and
specified that the right-hand Ctrl
key will be the Compose key. You
could just as easily use some other
key, such as F12, but you must be
careful that you are not taking over
a key that is vital to some other
program. Since there are two Ctrl
keys, hijacking one of them for our
own purposes is least likely to
cause disruptions. A more sophis-
ticated program should give the
user a choice of keys to use.

Once the Compose key has been
pressed the program must go into
compose mode. The first thing it
should do is to visually alert the

user that compose mode is now
active. In Windows 95 and NT 4 the
easiest way to do this is to have an
icon in the TaskBar tray (or the
notification area) that changes to
indicate the current mode. The
details of how to do this are given
later in this article.

In compose mode our program
must trap the next two keystrokes.
It will then compare these to a list
of possible key combinations. If
they match one of these then the
appropriate accented character
(or other extended character) is
then inserted into whichever pro-
gram was previously receiving
text. If no match is found then the
two characters are inserted sepa-
rately. A beeping noise is gener-
ated to warn the user of an
unexpected event.

System-wide hooks must usually
be implemented in a DLL (the
exceptions are the WH_JOURNALRE-
CORD and WH_JOURNALPLAYBACK hooks
used for recording and playing
back sequences of messages). This
is required so that the DLL (and its
hook procedure) can be mapped
into the address space of whatever
program is triggering keystroke
events. If the hook procedure were
in an application not a DLL it would
only be able to trap keystrokes for
that application, not any others.

This gives us the chance to
divide the tasks described above,
putting some in the DLL and some
in the parent program. I’ve decided
to make the DLL as simple as possi-
ble. It takes care of trapping and
examining the keystrokes. If a
compose sequence has been typed
then it notifies the parent program,
passing it the sequence typed and
the handle of the window that was
receiving the keystrokes. The
parent program then does the
translation and enters the
accented character into appropri-
ate window. This opens the possi-
bility of allowing the user to
customize the list of key
sequences; it would be much more
difficult to do this if the translation
occurred in the DLL.

User-Defined Messages
To work together the DLL and
parent program must talk to each

12 The Delphi Magazine Issue 26

other. This is best done with user-
defined Windows messages. A Win-
dows message such as WM_KEYDOWN
is simply a constant that tells the
Windows system and its applica-
tions how to interpret the data in
the lParam and wParam parameter.
Windows reserves the numbers 0
to 1023 for its own messages. Any
numbers above this can be used by
applications for their own private
messages.

All you need to do is declare a
constant with a number above this.
The constant WM_USER is 1024, so
your messages can use this to
ensure that they don’t encroach on
Windows message space. As an
example, you can create some
messages like this:

const

WM_MyFirstMessage = WM_USER+100;

WM_MySecondMessage = WM_USER+101;

This is fine if the messages are only
ever used within your own appli-
-cation. However, our key-trapping
DLL communicates with the parent
application by broadcasting a
user-defined message to all top-
level windows, rather than directly
to the parent app’s window (the
reasons will become clear later).

Now what happens if our DLL
broadcasts a WM_MyFirstMessage
and another application is running
that has also defined a private mes-
sage as WM_USER+100? Yep, the func-
tion in that other application that
is linked to that message will be
triggered, with potentially disas-
trous consequences. The golden
rule when sending user-defined
messages between modules or
applications is that the message
constant must be unique.

Fortunately Windows helps us
out with this by providing the Reg-
isterWindowMessage API function.
This takes a string parameter that
describes the message and returns
a unique message constant. If
another application calls Register-
WindowMessage with an identical
string parameter then the same
constant is returned. So, if we put
the following line of code in all
applications and DLLs that must
use a private message we are guar-
anteed that our message won’t

affect any other applications
(unless they happen to have used
an identical string!):

WM_MyFirstMessage :=

RegisterWindowMessage(

‘My unique WM_MyFirstMessage’);

We will use this technique to regis-
ter two messages to allow the DLL
to communicate with the parent
application. WM_ToggleIcon will tell
the parent program to change the
TaskBar icon to indicate it is in
compose mode. WM_TranslateKeys
will send the resulting keystroke
sequence for translation.

Broadcasting Messages
In the hook procedure described
below messages are sent to the
parent application by broadcast-
ing them to all top-level windows,
using the HWND_BROADCAST identifier
rather than a specific window
handle. You might think it would
be easier to use the parent app’s
handle here. You could, for exam-
ple, pass the handle to the DLL as a
parameter to the EnableHook ini-
tialization function, then store it in
a global variable. However, this
will only work when the parent
app’s main form has the focus; if
compose sequences are typed in
other apps nothing happens.

The reason for this is that, under
32-bit Windows, a separate
instance of a DLL is mapped into
the address space of each client
process. In this case, where the
DLL contains a Windows hook,
each process running on the com-
puter will be a client. Each of these
instances will have its own set of
global variables. The one that cor-
responds to the DCompose appli-
cation will have the ParentHandle
global variable correctly set but
the others will be set to zero. The
keystrokes will be trapped prop-
erly in the other apps but the zero
value will be passed to PostMessage,
where it will be interpreted as post
this message to the current thread;
this is not the result we want.

There are methods for allowing
multiple instances of DLLs to share
common memory. These include
using Windows memory mapped
files or the Delphi Shared Memory

Manager in the ShareMem unit. How-
ever, these are over-complex.

On the positive side, having
separate sets of variables for each
instance can be an advantage. You
needn’t worry about a compose
sequence meant for one window
winding up in another. Once
you’ve got DCompose running try
typing the first letter of a compose
sequence in one application, then
switch to another and type another
sequence. When you go back to the
first program and finish the
sequence the correct character
will be entered.

Installing The Hook
Now we are ready to implement the
DLL. The full source code is shown
in Listing 1. Note that there are
several compiler directives that
allow it to work under 16-bit
Delphi 1 as well (see later).

First, a warning. All keystroke
messages for the entire system will
pass through this hook procedure.
To avoid degrading system per-
formance you should make sure
that as little processing takes place
here as possible.

The uses clause contains only
Windows and Messages. When creat-
ing a new DLL project Delphi will
automatically put in SysUtils and
Classes. We can take these out and
reduce the DLL to just 16Kb.

There are several global vari-
ables. Hook stores the handle of the
current hook, which is needed for
the calls to CallNextHookEx and
UnhookWindowsHookEx. Next are the
two private messages used to com-
municate with the parent applica-
tion. Two boolean variables,
ComposeMode and FirstKeyEntered,
keep track of where we are in a
compose sequence. The ASCII
values of the two keys entered are
stored in FirstKey and SecondKey.

The calling program initializes
the hook procedure by calling the
EnableHook procedure, which ini-
tializes the two global boolean vari-
ables then calls SetWindowsHookEx
to register the hook procedure. By
passing it the handle of the DLL
(hInstance) we are telling Windows
this is a system-wide hook. The
hook is removed by calling the Dis-
ableHook procedure.

October 1997 The Delphi Magazine 13

➤ Listing 1

library KeyHook;
uses
{$IFDEF Ver80}
WinProcs,
WinTypes;

{$ELSE}
Windows,
Messages;

{$ENDIF}
var
Hook : HHOOK;
WM_ToggleIcon,
WM_TranslateKeys : Cardinal;
ComposeMode, FirstKeyEntered : boolean;
FirstKey,SecondKey : word;

{$IFDEF Ver80}
type
wParam = Word;
lParam = Longint;
LResult = Longint;

{$ENDIF}
function HookProcedure(nCode: Integer; vkCode: WPARAM;
MsgInfo: LPARAM) : LRESULT;
{$IFDEF Ver80} export {$ELSE} stdcall {$ENDIF};

const
ExcludedKeys = [VK_SHIFT, VK_MENU, VK_CONTROL, VK_LWIN,
VK_RWIN, VK_APPS];

var
KeyState : TKeyboardState;
Buffer : array[0..2] of char;
ToASCIIResult : integer;

begin
if (nCode = HC_ACTION) then begin
{ by default, don't allow keystroke to be passed to
designated window; this will be changed if our three
Compose checks fail and we call CallNextHookEx }

Result := 1;
{ check if right-hand control key is being released }
if (vkCode = VK_CONTROL) and
((HiWord(MsgInfo) and KF_UP) <> 0) and
((HiWord(MsgInfo) and KF_EXTENDED) <> 0) then begin
PostMessage(HWND_BROADCAST,WM_ToggleIcon,1,0);
ComposeMode := true;
{ bypass CallNextHookEx, since we don't want
right control key going to app }

exit;
end else if (ComposeMode) and
((HiWord(MsgInfo) and KF_UP) = 0) and
{ key being pressed } (not (vkCode in ExcludedKeys))
then begin
{ key not the shift key }
if not FirstKeyEntered then begin
GetKeyboardState(KeyState);
{$IFDEF Ver80}
ToASCIIResult := ToASCII(vkCode,
MapVirtualKey(vkCode, 0), @KeyState, @Buffer, 0);

{$ELSE}
ToASCIIResult := ToASCII(vkCode,
MapVirtualKey(vkCode, 0), KeyState, Buffer, 0);

{$ENDIF}
if ToASCIIResult = 0 then
FirstKey := 0

else if ToASCIIResult > 0 then
FirstKey := ord(Buffer[0])

else if ToASCIIResult < 0 then begin
{ a dead key has been entered; exit compose
mode and let Windows take care of composing
character itself }

PostMessage(HWND_BROADCAST,WM_ToggleIcon,0,0);
ComposeMode := false;
FirstKeyEntered := false;

Result := CallNextHookEx(0,nCode,vkCode,MsgInfo);
exit;

end;
FirstKeyEntered := true;
exit; { bypass CallNextHook }

end else begin
GetKeyboardState(KeyState);
{$IFDEF Ver80}
ToASCIIResult := ToASCII(vkCode,
MapVirtualKey(vkCode, 0), @KeyState, @Buffer, 0);

{$ELSE}
ToASCIIResult := ToASCII(vkCode,
MapVirtualKey(vkCode, 0), KeyState, Buffer, 0);

{$ENDIF}
if ToASCIIResult = 0 then
SecondKey := 0

else if ToASCIIResult > 0 then
SecondKey := ord(Buffer[0])

else if ToASCIIResult < 0 then begin
{ a dead key has been entered; exit compose
mode and let Windows take care of composing
character itself }

PostMessage(HWND_BROADCAST,WM_ToggleIcon,0,0);
ComposeMode := false;
FirstKeyEntered := false;
Result := CallNextHookEx(0,nCode,vkCode,MsgInfo);
exit;

end;
PostMessage(HWND_BROADCAST,WM_ToggleIcon,0,0);
ComposeMode := false;
FirstKeyEntered := false;
{$IFDEF Ver80}
PostMessage(HWND_BROADCAST, WM_TranslateKeys,
word(FirstKey + (SecondKey shl 8)), GetFocus);

{$ELSE}
PostMessage(HWND_BROADCAST, WM_TranslateKeys,
MAKELONG(FirstKey, SecondKey), GetFocus);

{$ENDIF}
exit; { bypass CallNextHook }

end;
end;

end;
Result := CallNextHookEx(0, nCode, vkCode, MsgInfo);

end;
procedure EnableHook;
{$IFDEF Ver80} export {$ELSE} stdcall {$ENDIF};

begin
ComposeMode := false;
FirstKeyEntered := false;
{$IFDEF Ver80}
Hook := SetWindowsHookEx(WH_KEYBOARD, HookProcedure,
hInstance, 0);

{$ELSE}
Hook := SetWindowsHookEx(WH_KEYBOARD, @HookProcedure,
hInstance, 0);

{$ENDIF}
end;
procedure DisableHook;
{$IFDEF Ver80} export {$ELSE} stdcall {$ENDIF};

begin
UnhookWindowsHookEx(Hook);

end;
exports
EnableHook, DisableHook;

begin
WM_ToggleIcon :=
RegisterWindowMessage('DCompose ToggleIcon');

WM_TranslateKeys :=
RegisterWindowMessage('DCompose TranslateKeys');

end.

The heart of the DLL is the Hook-
Procedure function. Look first at the
last line where there’s a call to
CallNextHookEx. This passes the
event trapped by this hook onto
the next one in the chain, setting
the result of our procedure to that
of the next one. There are a few
well-defined places in our hook
procedure where we don’t want to
pass the event on to the next hook
procedure, so we call Exit to leave
immediately. All other events con-
tinue through to the end of the pro-
cedure and on to the next hook.

Our first action in the hook pro-
cedure is to check the nCode
parameter. A value of HC_ACTION
means that a keystroke event is
being processed in the normal
way, so we examine it and decide
what to do. A value of HC_NOREMOVE
means that an application has used
PeekMessage to examine the mes-
sage queue but has not removed
the message from the queue. In this
case we just ignore the event and
go directly to the end of the func-
tion where it is passed to
CallNextHookEx. In some circum-
stances nCode can be a negative
value. Early versions of Windows

used these to maintain the hook
chain, but they are no longer
needed. However, it is recom-
mended that a hook procedure
ensure that CallNextHookEx is
called if a negative value occurs.

Examining Keystrokes
Once we’ve received notification
of a keyboard event we can exam-
ine it. First we set the function
Result to a non-zero value. This
tells Windows not to pass the key-
stroke on to the current applica-
tion, which is what we want if the
keystroke is part of a compose
sequence. If it is not then Result

14 The Delphi Magazine Issue 26

will be reset to the return value of
the CallNextHookEx function.

We initially want to trap our
Compose key, which is the right-
hand Ctrl key. We need to look at
three things to determine if that
key has been pressed. First we
check whether the wParam parame-
ter (here given a more understand-
able name of vkCode) is equal to
VK_CONTROL. This value is returned
by both control keys. To distin-
guish left from right we check if the
KF_EXTENDED flag is set in the
MsgInfo parameter. The extended
keys on the standard PC keyboard
are all those to the right of the main
block of alphanumeric keys, such
as the numeric keypad and naviga-
tion keys. They also include the
right hand Ctrl and Alt keys.
Finally we check the KF_UP flag to
see if the key is being released.

If these three conditions are met
the Compose key has been
pressed, so we go into compose
mode by setting the ComposeMode
variable to True and sending a mes-
sage to the parent application, tell-
ing it to provide a visual clue that
we are now waiting for a compose
sequence. We then exit the func-
tion immediately, bypassing the
CallNextHookEx call.

The next time a keystroke comes
through this function ComposeMode
will be True, so we can now exam-
ine and retrieve the two characters
of the compose sequence. Again
we check the KF_UP flag so that we
only process key releases. We also
ignore any presses of the Shift key;
this is necessary to allow upper
case accented letters to be com-
posed and for the symbols above
the numeral keys to be used. Sev-
eral other keys, such as Ctrl and
Alt, are also excluded.

The first time through in com-
pose mode the FirstKeyEntered
variable will be False, so we place
the ASCII value of the first key of
the sequence into FirstKey, then
set FirstKeyEntered to True. The
second time through the ASCII
value is placed in SecondKey.

The virtual key codes passed to
our hook procedure simply indi-
cate which key on the keyboard
was pressed; ‘a’ and ‘A’ will return
the same code. To distinguish the

different characters we must con-
vert them to ASCII. This is done
with two Windows API functions,
GetKeyboardState and ToASCII. The
first gets the state (up, down or tog-
gled) of each of the virtual keys and
stores them in an array. This array
is then passed as the third parame-
ter to the ToASCII function, where it
is examined to determine the state
of the Shift and Caps Lock keys.

ToASCII also takes several other
parameters. First is the virtual key
code of the key, which has been
passed to the hook procedure in
vkCode. The function must also be
passed the hardware scan code of
the relevant key. This is different to
the virtual key code and the same
virtual key can have different hard-
ware scan codes on different types
of keyboards, depending on the
location of the key. Fortunately
Windows provides the MapVirtu-
alKey function to translate
between the two. The last parame-
ter for ToASCII indicates whether a
menu is active.

The fourth parameter of ToASCII
is a buffer to hold the ASCII transla-
tion. Usually this will be a single
character, but in some circum-
stances it could be two characters.
Some keyboards will have accent
or diacritic keys that modify the
next character typed. For example,
some French keyboards have a cir-
cumflex key (^). When this is
pressed nothing appears on the
screen, but if the next key pressed
is an ‘o’, the resulting character is
ô. Keys that have no action them-
selves but modify the next key are
called dead keys.

If the next key after the dead key
is not a character that can be com-
bined with a circumflex then ToAS-
CII places both characters (^ and
o) in the buffer. If the return value
of ToASCII is greater than zero it
indicates how many characters are
in the buffer. In most circum-
stances it will be one character, so
we place that in the appropriate
variable (FirstKey or SecondKey).

The only time there will be two
characters is when a dead key has
been pressed. However, when this
happens it means the current key-
board layout itself supports pro-
ducing accented characters. Thus

if we detect a dead key we should
abandon our attempts to produce
an accented character and let Win-
dows get on with it itself. ToASCII
will return a negative value when a
dead key is entered; when this hap-
pens we turn off the compose
mode and pass the key on to the
next hook or the application.

Once we have successfully
trapped the two keys of the com-
pose sequence we leave compose
mode by resetting the boolean
variables to false and telling the
parent program to switch the icon
back to its default state. We then
use the WM_TranslateKeys message
to pass the sequence on to the
parent program for translation to
an accented character. These are
both passed in the wParam parame-
ter, after the Windows MAKELONG
function is used to combine them.
The lParam parameter is used to
pass the handle of the window
where the keys were typed. This is
retrieved using the API function
GetFocus. The DLL’s job is done.

The Parent Application
The main DCompose program
takes care of actually translating
the compose sequence and
inserting the resulting character
into the appropriate text window.
It also performs some house-
keeping. The first thing it must do
is set up the user interface.

This program takes advantage of
the Windows 95/NT4 TaskBar Tray
(also called the notification or
status area). It places an icon on
the Tray that changes colour when
compose mode is active. Right
clicking on the icon will bring up a
menu allowing you to change
options or exit. The icon is the red
letter Á in Figure 1. Details of how
to produce Tray icon programs
were covered by Marco Cantù in
the August 1996 issue, so I won’t go
into detail here. The code for ini-
tializing and removing the tray
icon is in the FormCreate and Form-
Destroy methods in Listing 2.

Initializing the Tray icon is
simple. First you need to load an
icon from a resource file with
LoadIcon; we’ll store it in the form’s
own Icon property. Remember to
add the icons to a new resource file

16 The Delphi Magazine Issue 26

(called DComp.res here) instead of
the project’s resource file
(DCompose.res), otherwise your
icons will be overwritten when you
next compile!

Next we initialize a TNotifyIcon-
Data structure with the informa-
tion the Tray needs; this is then
sent to the system tray with the
Shell_NotifyIcon API function. Of
particular interest is the uCall-
BackMessage field, which points to a
user-defined message we will use
to communicate with the Tray
icon. This is linked to the IconTray
method of the form. That method
simply displays a popup menu at
the cursor position if the right
mouse button is clicked over the
icon. If the left button is double
clicked on the icon the Options1-
Click method is invoked; this
simply shows the main form,
which is a modal dialog box.

One trick Marco showed in his
article was how to ensure that the
program doesn’t create a button
on the TaskBar, in addition to the
icon in the Tray. This is done by
disabling the creation of the
hidden application window. To do
this set the global system variable
IsLibrary to True in the initializa-
tion section of the RunFirst unit:

➤ Figure 1: DCompose icon in the Windows NT4 Tray

unit RunFirst;
interface
implementation
initialization
IsLibrary := True;

end.

This unit is placed first in the uses
clause of the program source (as in
Listing 3) to ensure it is called
before an attempt is made to create
the application window. IsLibrary
is set back to False at the start of
the program source. This trick was
necessary in Delphi 2, but Delphi 3
takes care of hiding the TaskBar
button itself if Application.Show-
MainForm is set to False. We use
compiler directives to ensure this
method is only used with Delphi 2.

Listing 3 shows another simple
trick. We need to ensure that only
one copy of DCompose is running
at any one time. There are a variety
of ways to do this. Several are
described in my book Delphi 3 User
Interface Design, and two others
were covered in the December

1996 issue (pages 26 and 54). The
method used above is to create a
Windows mutex. Mutexes are
objects that allow 32-bit Windows
programs to gain mutually exclu-
sive access to program resources.
To use them we call the Create-
Mutex function, passing a string
unique to our project. If the mutex
already exists the ShowLastError
function will return ERROR_
ALREADY_EXISTS; we exit the pro-
gram if this happens. If the mutex
doesn’t exist then we continue ini-
tializing the application as normal.

The Translation Table
Next in the order of business is to
set up the data structure used for
translating the compose seq-
uences to accented and extended
characters. This needs to store the
two characters of the sequence as
well as the single resulting charac-
ter. Any number of methods could
be used for this, ranging from a
simple array of strings to a full
blown searchable data structure

➤ Listing 2

const
wm_IconMessage = wm_User;

type
TDCompForm = class(TForm)
{ ... }
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure Options1Click(Sender: TObject);
procedure About1Click(Sender: TObject);
procedure Close1Click(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure FontListChange(Sender: TObject);

private
NotifyIcon: TNotifyIconData;
CharList : TStringList;
procedure AppOnMessage(var Msg: TMsg;
var Handled: Boolean);

procedure TranslateKeys(First,Second : word;
Wnd:THandle);

procedure InitDefaultList;
public
procedure IconTray(var Msg: TMessage);
message wm_IconMessage;

end;
{$R *.DFM}
{$R Dcomp.res}
procedure TDCompForm.FormCreate(Sender: TObject);
begin
{ load the initial icon }
Icon.Handle := LoadIcon(HInstance, 'LETTERRED');
{ fill the NotifyIcon data structure }
with NotifyIcon do begin
cbSize := sizeof(NotifyIcon);
wnd := Handle;
uID := 1; { icon ID }
uCallBackMessage := wm_IconMessage;
hIcon := Icon.Handle;
szTip := 'DCompose';
uFlags := nif_Message or nif_Icon or nif_Tip;

end;
Shell_NotifyIcon(NIM_ADD, @NotifyIcon);
CharList := TStringList.Create;
with CharList do begin
{ sort list alphabetically }
Sorted := true;
{ must set this to accept duplicates, otherwise it seems
to see the lower and upper case strings as duplicates
and eliminates lower case }

Duplicates := dupAccept;
end;
InitDefaultList;
Application.OnMessage := AppOnMessage;
EnableHook;

end;
procedure TDCompForm.FormDestroy(Sender: TObject);
begin
NotifyIcon.uFlags := 0;
Shell_NotifyIcon(NIM_DELETE, @NotifyIcon);
CharList.Free;
DisableHook;

end;
procedure TDCompForm.IconTray(var Msg: TMessage);
var
Pt: TPoint;

begin
if Msg.lParam = wm_rbuttondown then begin
GetCursorPos(Pt);
SetForegroundWindow(Handle);
PopupMenu1.Popup(Pt.x, Pt.y);

end;
if Msg.lParam = wm_lbuttondblclk then
Options1Click(self);

end;
procedure TDCompForm.Options1Click(Sender: TObject);
begin
ShowModal;

end;

October 1997 The Delphi Magazine 17

like a B-tree or hash table. The
latter methods are a bit over the
top for a list of 100-200 items so we
will opt for a simpler solution.

My first approach was to use a
typed constant array of records,
simply because I thought it was an
interesting but rarely used method
to program. Listing 4 shows the
declarations for the types and the
constant array for this method.

This method works fine, in that
you can scan through the array
comparing the compose sequence
to the characters in the Pair field of
each record, then return the

const
Maxpairs = 105;

type
TSeqPair = record
Pair : string[2];
Acc : char;

end;
TSeqArray =
array[1..MaxPairs] of TSeqPair;

const
SeqTable : TSeqArray = (

(Pair:'ss';Acc:'ß'),
(Pair:'a`';Acc:'à'),
(Pair:'a''';Acc:'á'),
(Pair:'a^';Acc:'â'),
(Pair:'a~';Acc:'ã'),
(Pair:'a"';Acc:'ä'),
(Pair:'a*';Acc:'å'),
(Pair:'ae';Acc:'æ'),
(Pair:'c,';Acc:'ç'),
(Pair:'e`';Acc:'è'),
{ ... }
(Pair:'Y=';Acc:'¥'),
(Pair:'So';Acc:'§'),
(Pair:'CO';Acc:'©');

➤ Listing 4

contents of the Acc field when a
match is found. However, this
method isn’t very flexible: the user
can’t change any of the sequences
or add new ones. It would be nicer
to allow the user to customize the
list to his or her own liking.

I finally decided to store the
sequences and resulting character
in a TStringList. I chose this for
several reasons. First, the string
list has functions for adding and
deleting items and sorting the list.
This made maintenance of the list
easy. Second, the SaveToFile and
LoadFromFile methods provide a
simple way to save the user’s
changes and reinstate them next

time the program is run. Finally,
the list can be displayed in a con-
trol such as a list box by assigning
the string list to the Itemsproperty:

MyListBox.Items := MyStringList;

Each item of the string list contains
the accented or extended charac-
ter, followed by the two characters
of the sequence. A tab character
is placed before the sequence

➤ Listing 3

program dcompose;
uses
{$IFDEF Ver90} RunFirst in 'RunFirst.pas', {$ENDIF}
Forms, Windows,
DCompfrm in 'DCompfrm.PAS'; {DCompForm}

{$R *.RES}
const MutexName = 'Run only one DCompose';
var MyMutex : THandle;
begin
{$IFDEF Ver90}
IsLibrary := False;
{$ENDIF}
MyMutex := CreateMutex(nil,true,MutexName);
if (MyMutex = 0) or (GetLastError = ERROR_ALREADY_EXISTS) then Halt;
Application.ShowMainForm := False;
Application.CreateForm(TDCompForm, DCompForm);
Application.Run;
CloseHandle(MyMutex);

end.

18 The Delphi Magazine Issue 26

characters so that when displayed
in the list box they appear in two
columns.

Of course, a list box doesn’t actu-
ally allow the user to modify the
entries, so DCompose as pre-
sented here does not allow cus-
tomization. This could be achieved
with something like a string grid, or
perhaps some edit boxes and
Modify and Add buttons next to the
list box, letting the user type new
entries separately.

Listing 5 shows part of the Init-
DefaultListmethod that enters the
characters into the string list. The
string list is first created in the
FormCreate method (Listing 2).
There the Sorted property is set to
True. The Duplicates property is
also set to dupAccept here. When
checking for duplicates the
TStringList ignores case differ-
ences, so we must accept dupli-
cates to allow both lower and
upper case compose sequences.

Receiving DLL Messages
Once the Tray icon and string list
are initialized we can start the key-
board hook. This is done through
the EnableHookprocedure exported
from the DLL. It and its counter-
part, DisableHook, are imported
into our program statically with
the following declarations:

implementation
procedure EnableHook; stdcall;
external ‘KeyHook.dll’;

procedure DisableHook; stdcall;
external ‘KeyHook.dll’;

We must also remember to set up
the two user-defined messages,
WM_ToggleIcon and WM_Translate-
Keys, with calls to RegisterWindow-
Message identical to those in the
DLL; this is done in the initializa-
tion section of the main form’s
unit. Finally we need to initialize a
mechanism to trap these mes-
sages. This is done in FormCreateby
pointing the Application.OnMes-
sage event to our event handling
method, AppOnMessage. All mes-
sages destined for the application
will come through here, so we can
filter out those from the DLL. With
all this done the program sits back
and waits for a compose sequence.

procedure TDCompForm.InitDefaultList;
begin
with CharList do begin
Clear;
Add('ß'+#9+'ss');
Add('à'+#9+'a`');
Add('á'+#9+'a''');
Add('â'+#9+'a^');
Add('ã'+#9+'a~');
Add('ä'+#9+'a"');
Add('å'+#9+'a*');
Add('æ'+#9+'ae');
Add('ç'+#9+'c,');
Add('è'+#9+'e`');
{ ... }

end;

➤ Listing 5

Listing 6 gives the code for the
application’s message trapping
routine. As mentioned earlier, mes-
sages from the DLL are broadcast
to all windows that the operating
system views as top-level (ie those
that are not child windows). The
primary top-level window of
DCompose will differ in Delphi 2
and 3. Normally the hidden appli-
cation window will be the top-level
window. However, under Delphi 2
DCompose uses the IsLibrary trick
described above to suppress the
creation of the application window
and thus its TaskBar button. In this
case the window for the program’s
main form will be the top level
window.

The hidden application or main
form windows are not necessarily
the only top-level windows in a
Delphi programs. If your program
uses pop-up menus (as does
DCompose), timers, the clipboard
or drag-and-drop operations then
Delphi will allocate more top-level
windows to simplify message proc-
essing. We must make sure our
application message handler does
not trap messages sent to these as
well, otherwise messages sent
from the DLL will be received more
than once. So, before proceeding
with processing the DLL messages
we compare the destination
window of the message (Msg.hWnd)
to the handles of the application
and main form window.

If the message received is the
WM_ToggleIcon message then we
need to change the Tray icon. The
initial icon is a red letter Á; when
compose mode is active this
changes to a similar but green icon.
The required icon is indicated by
the wParam parameter of the mes-
sage, so we check that, load the

icon into the NotifyIcon structure,
and pass it to the Tray with
Shell_NotifyIcon.

If, instead, the message is
WM_TranslateKeys then this means
that a compose sequence has been
completed. The two characters of
the sequence are extracted from
the wParam parameter using the
LoWord and HiWord functions and
passed to our TranslateKeys
method, along with the handle of
the currently focused window
contained in lParam.

Translating Keystrokes
Translating the sequence is a
simple process, as shown in
Listing 7. We just scan through the
string list comparing the two char-
acters passed from the DLL to the
third and fourth letters in each
string (remember, these are pre-
ceded by the accented character
and a tab). We check the compose
sequence in either order, so that
entering ‘"’ and ‘a’ gives the same
character as ‘a’ and ‘"’. If a match is
found the accented or extended
character (the first character in
the string) is copied to the local
variable AccChar. This is then sent
to the destined window (the
handle of which was passed from
the DLL) by posting a WM_Char mes-
sage. If no match was found a beep

➤ Listing 6

procedure TDCompForm.AppOnMessage(var Msg: TMsg; var Handled: Boolean);
begin
if (Msg.hwnd = Handle) or (Msg.hwnd = Application.Handle) then
if Msg.Message = WM_ToggleIcon then begin
if Msg.WParam = 1 then begin
NotifyIcon.hIcon := LoadIcon(HInstance, 'LETTERGREEN');

end else begin
NotifyIcon.hIcon := LoadIcon(HInstance, 'LETTERRED');

end;
Shell_NotifyIcon (NIM_MODIFY, @NotifyIcon);
Handled := true;

end else if Msg.Message = WM_TranslateKeys then begin
TranslateKeys(LoWord(Msg.wParam),HiWord(Msg.wParam),Msg.lParam);
Handled := true;

end;
end;

October 1997 The Delphi Magazine 19

is issued and the two characters
are sent to the window.

Delphi 1
So far we’ve written DCompose as a
32-bit program. Its reliance on the
TaskBar tray restricts it to
Windows 95 and NT 4. However
that is just for the convenience of
the user interface. The keyboard
hook DLL can be compiled under
16-bit Delphi 1 with just a few
changes; these are highlighted by
{$IFDEF Ver80} compiler directives
in Listing 2.

First, the required Windows
units have different names,
WinTypes and WinProcs. Also, we
must declare the wParam, lParam
and lResult types ourselves. In
Delphi 2 and 3 they are declared in
the Windows unit as 32-bit inte-
gers; however under 16-bit Win-
dows the wParam parameter of
messages is a 16-bit integer, so we
declare that as a word.

There are slight differences in
how some parameters are passed
to the ToASCII and SetWindow-
sHookEx functions (the presence or
absence of the @ operator). Also,
the functions and procedures in
the DLL must be declared with the
export directive rather than
stdcall.

The most important change is in
how the keys are passed to the
parent program. Since the wParam
message parameter is now a 16-bit
word rather than 32-bit longint we
cannot use the MAKELONG function to
place the two characters in the
lower and upper words of the
parameter. Instead we make them
the lower and upper bytes of the
word parameter using the addition
and shl operators:

PostMessage(HWND_BROADCAST,
WM_TranslateKeys,
word(FirstKey +
(SecondKey shl 8)),GetFocus);

We must then modify the call to
TranslateKeys in the DCompose
application to extract the two
bytes:

TranslateKeys(
Lo(Msg.wParam),
Hi(Msg.wParam),Msg.lParam);

procedure TDCompForm.TranslateKeys(First,Second : word;Wnd:THandle);
var i,AccChar : word;
begin
AccChar := 0;
for i := 0 to pred(CharList.Count) do begin
if (CharList[i][3] = char(First)) and (CharList[i][4] = char(Second)) or
(CharList[i][4] = char(First)) and (CharList[i][3] = char(Second)) then
AccChar := ord(CharList[i][1]);

end;
if AccChar = 0 then begin
PostMessage(Wnd,WM_Char,First,1);
PostMessage(Wnd,WM_Char,Second,1);
MessageBeep(-1);

end else
PostMessage(Wnd,WM_Char,AccChar,1);

end;

➤ Listing 7

There is one major functional dif-
ference between the 32-bit and
16-bit versions of the DLL to keep
in mind. Earlier on I pointed out
that under 32-bit Windows the DLL
is mapped into the address space
of each client application. As a
result, each instance of the DLL has
its own set of global variables.

Under 16-bit Windows 3.1 a
single instance of a DLL is shared
by all applications. This includes
its global data. With the DCompose
DLL this doesn’t present too much
of a problem. If you start a com-
pose sequence while one applica-
tion has the focus then finish it in
another the character will show up
in the window of the second appli-
cation. Under 32-bit Windows
DCompose will wait patiently until
you switch back to the first pro-
gram to finish the sequence before
entering the character. Although
this difference doesn’t have much
of an effect on this DLL with some
others it could be a major problem.

Final Note
The translation scheme used in
DCompose assumes that the stan-
dard Windows character set
(based on the ANSI standard) is in
use. This covers the characters
commonly used in the Western
European languages. However, it
excludes many of the accented
characters used in Eastern Euro-
pean languages. Of course, it also
doesn’t include the completely dif-
ferent alphabets like Cyrillic,
Hebrew and Arabic.

If you are using the ANSI version
of Windows then you often can’t
produce the eastern characters.
However, many of the fonts
designed for Windows 95/NT will
have alternative character sets,

such as Turkish or Central Euro-
pean, that replace ANSI characters
with the ones of interest. For exam-
ple, the character with the code
0200 is È in the default Windows
character set, but a C hachek (a C
with an inverted ^ mark) in the
Baltic and Central European char-
acter sets. The same character can
also have different codes: Ë is
number 0203 in the Western char-
acter set, but 0168 in Cyrillic. If you
wish to use DCompose with these
alternative character sets then
you will need to change the trans-
lation table accordingly. Of
course, the text editing application
will have to support the selection
of different character sets as well;
many don’t.

The problems with different
code pages for different languages
disappears with the use of Uni-
code, a new standard that encodes
thousands of the characters from
different world languages (includ-
ing numerous ideographs from Far
Eastern languages). All characters
can be produced on any system
that supports Unicode. Unfortu-
nately, Unicode is not fully sup-
ported in Windows 95, only
Windows NT, and few mass market
applications use it. Once Unicode
is more widespread an enhanced
version of a utility such as
DCompose could be very useful for
accessing the wider range of
available characters.

When he isn’t lurking behind your
keyboard Warren Kovach writes
and sells statistical software. He is
also the author of Delphi 3 User
Interface Design, published by
Prentice Hall. You can contact him
at wlk@kovcomp.co.uk

	Windows Hooks
	Designing The Hook
	User-Defined Messages
	Broadcasting Messages
	Installing The Hook
	Examining Keystrokes
	The Parent Application
	The Translation Table
	Receiving DLL Messages
	Translating Keystrokes
	Delphi 1
	Final Note

